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Abstract 

During the last years, the electricity sector has experienced great changes, especially within the economic 

regulation. After receiving several criticisms, the rate of return regulation has been replaced by incentive 

regulation. The main objective of this regulation is to stimulate business efficiency. This paper proposes an 

alternative application of Data Envelopment Analysis to the Brazilian case, characterized by a large territory: the 

use of Unit Networks in the distribution segment to regionalize the concession area and then to analyse the 

efficiencies separately. Many regulators use the entire distribution company as a Decision Making Unit for price 

regulation when benchmarking is applied. However, in Brazil, quality performance is measured in detail using 

sets of consuming units; i.e., quality is measured using small parts of the company. Given that efficiency cannot 

be assessed without considering various aspects of quality performance and characteristics of the underlying 

environment in the utility’s concession area, this paper tries to find the trade-off among management, quality, 

environment and costs. Therefore, the main contribution of this paper is twofold: the solution for Brazilian 

distribution companies’ heterogeneity and the choice of variables that are better measures for an efficiency 

analysis. Some examples with Brazilian utilities are provided to show the advantages of the proposed approach. 

Keywords: Electricity Power Distribution, Incentive Regulation, Data Envelopment Analysis 

1. INTRODUCTION 

Various reforms have been proposed for the electricity sector around the world to make 

utilities more efficient through competition, privatization and price mechanisms. In general, 

during the restructuring process the industry is divided into four distinguished activities: 

generation, transmission, distribution and retailing. This paper focuses only on the economic 

regulation of the distribution companies. 

One of the major problems of rate of return regulation is that companies are induced to over-

capitalize to obtain higher remuneration of capital. Consequently, the tariffs paid by 

customers increase. The incentive regulation tries to force the companies to be more efficient 

(Ergas and Small, 2001) and try to avoid the Averch-Johnson effect (AVERCH-JOHNSON, 

1962).  

The incentive regulation uses benchmarking techniques to define the efficient companies. In 

general terms, this technique can be characterized as a method that compares a group of 

companies as they were subjected to a competitive environment (LOWRY and GETACHEW, 

2009). Results from a survey conducted among energy regulatory agencies in 40 countries 

showed that there is a clear trend in the electricity industry towards the use of Data 

Envelopment Analysis (DEA) in both transmission and distribution (HANEY and POLLITT, 

2009).  

It is noteworthy that despite the popularity of the DEA, its application is restricted mainly to 

European countries characterized by small territorial distances and homogeneous 

environmental conditions. In Brazil, conditions are different: 

“There is a large variation in sizes, scopes and environmental characteristics of the Brazilian 

distribution companies. It seems obvious that the diversity is higher in Brazil than in most 
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other countries where benchmarking-based regulation has been traditionally used” 

(BOGETOFT, 2014). 

This paper proposes a new approach to solve the heterogeneity constraint and to allow the 

inclusion of quality and environmental aspects; the approach combines the DEA with the Unit 

Networks (UN) concept. The UN is used for splitting a distribution company concession area 

into more homogeneous subgroups that are further considered as DMUs. 

2. DISTRIBUTION REGULATION 

2.1 Price regulation 

Since 2003, the distribution companies have been regulated using a price cap model based on 

RPI -X formula that is reset every 4 years. Price cap model typically specifies an average rate 

at which the prices that regulated companies charge for its services must decline, after 

adjusting for inflation. This rate is called the X-Factor. 

During the third price revision, ANEEL changed from the bottom-up approach of Firm 

Reference Model to top-down methods such as DEA and Corrected Ordinary Least Square. 

Instead of analysing each activity, the efficiency is measured comparing outputs and inputs 

among distribution companies.  

The two-stage DEA model was used to take the environmental aspects of the distribution 

service into account. The model outputs were network length, energy delivered and number of 

customers. The inputs were operational costs. As environmental variables, it considered the 

local wage level, the precipitation rates, the customer density and a complexity index. The 

wage level measures the differences in labour costs at the utilities determined by the local 

markets. The complexity index measures the difficulty faced by each utility in reducing non-

technical losses. 

From this comparison with actual data from the utilities, the regulator sets different X-Factors 

for passing operational costs to customers through tariffs according to the average efficiency 

of the sector. The X-factor is applied on the value of the Parcel B of distribution companies. 

Thus, for more efficient companies it is possible to have earnings above actual costs, while for 

less efficient ones there are deficits not allowed to pass through to consumers (ANEEL, 

2006). 

2.2 Quality of supply regulation 

In Brazil, the quality performance analysis is carried out based on divisions of the concession 

area called sets of consuming units. Thousands of sets are created; performance comparisons, 

formerly done company by company, changed to set by set (TANURE, TAHAN and LIMA, 

2006).  

One set of consuming units is composed of the units fed by the same distribution substations. 

The central idea is that the sets are more comparable than the distribution companies as a 

whole because the concession areas in Brazil usually cover a wide range of social, economic 

and environmental characteristics.  

After defining the sets, a clustering process is carried out based on the characteristics of the 

sets. This is necessary because there are approximately 6,000 sets to analyse and for which to 

establish quality performance targets. 

Quality of supply is assessed for each cluster using the collective indicators System Average 

Interruption Duration Index (SAIDI) and System Average Interruption Frequency Index 
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(BILLINTON and ALLAN, 1984). The first index measures the mean time during the 

observation period for which there was discontinuity in the electricity supply, Equation (1).  

SAIDI =
∑ 𝑈𝑖 ∗ 𝑁𝑖

∑ 𝑁𝑖

 

 (1) 

Where: 

Ui: Annual outage time; 

Ni: Number of customers at load point i. 

This indicator is used in this paper as a quality measure, after multiplication by the number of 

customers at the load point i.  

2.3 Combined price and quality regulation 

Regarding price regulation, the Brazilian regulator bases its analysis on the company as a 

whole; i.e., the DMUs are the distribution companies. However, for quality regulation, the 

regulator bases its analysis on the set of consuming units, which are divisions of the 

concession area. These perspectives are depicted in Figure 1. 

 

Figure 1. Regulatory perspective 

Given that price regulation cannot be disconnected from the quality of the service, the 

company approach and the set of consuming units approach must converge to the same base.  

Consider the case of the Brazilian company CEMIG. Its distribution network is over 460,000 

kilometres in length (CEMIG, 2019). The company operates in the Minas Gerais state that has 

an area of approximately 586,528 km
2
, larger than countries such as France, Spain and the 

United Kingdom (IBGE, 2019). For example, the average lightning rate, which may affect the 

continuity of supply, varies from 0.085 to 5.971 per km
2
 per year within the concession area. 

All of these peculiarities shape the characteristics of CEMIG’s distribution network, which 

requires different treatment for each region. 

The use of sets of consuming units as DMUs considerably increases the number of DMUs. 

Moreover, the DMUs should represent organizational units, whereas the sets of consuming 

units represent portions of the electrical distribution network. The UN concept introduced in 

this paper tries to minimize the distance between the price regulation and the quality of supply 

regulation. The boundaries of UNs have strong connections to the regional organizations that 

are usually present at the distribution companies. Therefore, the regulator can consider the 

same unit of analysis both for the quality of supply and for price regulation. Additionally, the 

regulator may determine whether the cost reduction is being done to the detriment of the 

quality of supply. 
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3. METHODOLOGY 

3.1 Data Envelopment Analysis 

DEA is a nonparametric methodology that uses real data to measure the relative efficiency of 

a DMU. It was proposed by Charnes, Cooper and Rhodes in 1978 (Charnes, Cooper and 

Rhodes, 1978) to address the efficiencies of companies operating in constant returns to scale 

(CRS) and further extended by Banker, Charnes and Cooper (1984) to variable returns to scale 

(VRS). 

This efficiency analysis can be focused on input reduction or output expansion. The result 

from an input-oriented model is the maximum reduction possible in the inputs level for a 

given level of output. With an output-oriented focus, the model seeks the maximum output 

quantities that can be generated by the actual level of inputs used by the company. The 

efficiency scores can vary from 0 to 1, where 1 denotes the efficient company.  

The majority of the DEA models consider either constant (Charnes et al., 1978) or variable 

returns to scale (Banker et al., 1984). For constant returns to scale, outputs and inputs increase 

(or decrease) by the same proportion along the frontier. Where the technology exhibits 

increasing, constant or decreasing returns to scale along different segments of the frontier, the 

variable returns to scale model is indicated (SUBHASH and CHEN, 2010). The CRS model 

assesses the overall technical and scale efficiency, while a VRS model measures only the 

technical efficiency. For more details, see (CHARNES et al., 1978) and (BANKER et al., 

1984). 

A Two-Stage DEA model 

Two-stage analysis is one of the most popular techniques in the literature to take 

environmental variables into account. We employed this technique as follows: in the first 

stage, we determined the technical efficiency performances of the Unit Networks (UNs) or 

distribution companies using DEA. In the second stage, treating these calculated efficiency 

scores as dependent variables, we used a regression technique to determine the environmental 

variables that may explain the efficiency scores. This approach is advocated by 

(CHILINGERIAN and SHERMAN, 2004), (SUBHASH, 2004) and (RUGGIERO, 2004). 

Efficiency scores calculated from DEA take values between 0 and 1, making the dependent 

variable in the second stage limited. The Tobit model (Tobin, 1958) is frequently used to 

address such a limited dependent variable and is followed in this study. 

The calculated efficiency score in the first stage (θi) will be corrected by environmental 

variables (zi) in this second stage. Therefore, a latent (unobserved) variable (θi*) is calculated 

as in Equation 2: 

      𝜃𝑖
∗;   0 ≤  𝜃𝑖

∗
  ≤ 1 

𝜃i =   0  ; 𝜃𝑖
∗

 < 0 

1  ;  𝜃𝑖
∗

 > 1 

 

𝜃𝑖
∗

  = ziβ + εi 

(2) 

Here zi is an (r × 1) vector of environmental variables and β is an (r ×1) vector of parameters 

to be estimated.  
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3.2 Unit Network 

The definition of a UN is a twofold process. The first step is to define the domain areas of 

each connection point between the transmission and distribution networks. The domain area 

of a connection point is defined as the set of buses that are reached by the power flow that 

cross the border transformer. The second step couples domain areas based on strong and weak 

links through network equivalents. In the presence of strong links, two or more UNs can be 

grouped to form a larger UN. Connections are strong if they have a low equivalent impedance 

value and are weak if the impedance is high.  

Example of Unit Network Definition 

Consider the system depicted in Figure 2. The red box represents the transmission grid and 

green box represents the distribution grid. Usually, the flow direction in the border 

transformers, which connects the grids, is from transmission to distribution. If a virtual 

generator is considered at the primary bind of the border transformer, it is possible to 

determine the domain of this connection point using the concept of a generator's domain 

introduced by (KIRSCHEN and STRBAC, 1997). 

 

Figure 2. Transmission and distribution grids connection 

The domain area of the connection point is the set of buses that are reached by the power flow 

that crosses the border transformer. The power flow reaches a specific bus if it is possible to 

find a path on the network going from the connection point to the bus where the flow direction 

remains unchanged. An example of the domain area for four connection points is depicted in 

Figure 3. 

 

Figure 3. Connection point domain area 

Some medium-voltage distribution networks have a mesh topology, so it is possible to have 

overlap between domain areas where the connection points to transmission grid are close, as 

seen in Figure 3. When this is the case, the second step determines whether these two or more 

domain areas should be coupled, using the concept of Thevenin equivalent impedance. As 

represented in Figure 4, the equivalent impedance between the secondary bind of the border 

transformers is computed on a two by two basis.  
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Figure 4. Equivalent impedance between two connection points 

The equivalent impedance represents the electrical proximity of the two buses. If the 

equivalent impedance is small, there is a strong link between the two connection points. 

Therefore, they should be coupled to form a unique UN. Otherwise, if the equivalent 

impedance is large, they should remain separate. The concept of small or large impedance 

depends on the system characteristics (LIMA, QUEIROZ and LIMA, 2011). 

4. DATA AND MODELS SPECIFICATION 

4.1 Choice of variables 

The distribution company requires labour and capital inputs. The labour input was considered 

via number of employees (proxy). Capital input was taken into account by other two 

variables: network length and transformer capacity. Regarding to the outputs, we considered 

number of customers and energy delivered. We use physical measures of these inputs and 

outputs applied in benchmarking studies (JAMASB and POLLITT, 2001; ESTACHE, ROSSI 

and RUZZIER, 2004; POMBO and TABORDA, 2006; ÇELEN, 2013) together with quality 

of supply and environmental variables. 

Many authors (GIANNAKIS et al., 2005; YU, JAMASB and POLLITT, 2009; CAMBINI, 

FUMAGALLI and CROCE, 2012; GROWITSCH, JAMASB and POLLITT, 2009; JAMASB, 

OREA and POLLITT, 2012) have incorporated quality performance in the DEA analysis 

using the Total Time Lost Due To Interruptions (TINT) indicator as input instead of SAIDI 

directly. The TINT is calculated by multiplying SAIDI values (Equation 1) by the number of 

customers.  

The most relevant environmental variables for efficiency analysis are customer density (to 

identify rural and urban areas), frequency of lightning (to identify climate influence) and 

ownership (represented by a binary variable that is zero for state-owned company and 1 for a 

private company). 

4.2 Brazilian example 

This paper compares the performance of 10 distribution utilities in the Brazil in the period 

from 2006 to 2007. The data can be found on the ANEEL website, where it was considered 

the latest consistent sample available for this period.  

This sample comprises the states of São Paulo, Rio de Janeiro, Minas Gerais and Rio Grande 

do Sul. These four states are responsible for 61% of the Brazilian Gross Internal Product 

(IBGE, 2019). The ten companies that operate in these four states supplied approximately 

56% of the total load of Brazil (ANEEL, 2019). These distribution companies have 712 sets of 

consuming units. They were grouped into 70 UNs using the method of Section 3.2. 

Each set of consuming units has the following attributes: network length (x1), transformer 

capacity (x2), number of employees (x3), TINT (x4), energy delivered (y1), number of 
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customers (y2), number of lightning, (z1), customer density (z2) and ownership (z3). The 

attributes xE (for E=1,2,3,4) are inputs, the yM (for M=1,2) are outputs and the zr (for r=1,2,3) 

are environmental variables. 

With respect to the numbers of employees, the UNs’ geographical limits are closely similar to 

the areas of activity of each utility’s regional management offices. Therefore, it was not 

difficult to allocate the number of employees to each UN.  

An overview of a summary of key statistics of the data for the 70 UNs is presented in Table 1 

in the form of minimum, maximum, mean and standard deviation values. 

Table 1. Brazilian Unit Networks (2006/2007) – Statistical summary 

To validate DEA model, Table 2 was constructed from the correlation coefficients between 

the inputs and outputs. Its goal is to verify whether an increase in some input does not result in 

a reduction in some output (assumptions of monotonicity). 

Variables  x1 x2 x3 x4 y1 y2 

x1 1 

  

   

x2 0.49 1 

 

   

x3 0.44 0.88 1    

x4 0.54 0.90 0.88 1   

y1 0.35 0.98 0.85 0.89 1  

y2 0.44 0.98 0.90 0.94 0.99 1 

Table 2. Correlation coefficients among inputs and outputs 

Although there is a high correlation between energy delivered and number of costumers, both 

variables are kept in the analysis. It is possible for two UNs to deliver same amount of energy 

to distinctly different numbers of consumers (NEUBERG, 1977).  

To support the choice of variables, a statistical analysis was carried out. Four distinct linear 

regressions were performed, one for each dependent variable (network length, transformer 

capacity, number of employees and TINT). The independent variables were energy delivered 

and number of customers. Table 3 presents the statistical parameters evaluated to ascertain the 

relevance of the choice of variables for accessing the performance of UN. R
2
 values in Table 3 

indicate that 41% of the variation in network length, 97% of the variation in transformer 

capacity, 86% of the variation in number of employees and 11% of the variation in TINT were 

subjected to the two independent variables: energy delivered and number of customers.  

Aspect Dependent Variable  R
2
 Adjusted R

2
 F-value Significance 

Capital Input Network length 0.41 0.40 47.95 1.63338E-16 

Capital Input Transformer capacity 0.97 0.97 2147.68 3.7225E-104 

Labour Input Number of employees 0.86 0.86 412.82 9.95182E-59 

Quality of supply TINT 0.11 0.10 8.50 0.000331945 

Table 3. R
2
 and ANOVA results 

Descriptive Statistics 

Description Unit Minimum Maximum Mean St. Deviation 

Network length (x1) km 284 53,456 9,576 13,740 

Transformer capacity (x2) kVA 14,866 12,577,411 1,160,368 2,057,648 

Number of employees (x3) Person 9 9,131 867 1,545 

TINT (x4) Hours 171,980 40,862,936 4,356,342 5,808,652 

Energy delivered (y1) MWh 26,191 24,763,333 1,839,310 3,592,334 

Number of customers (y2) Person 4,988 4,850,254 391,979 706,657 

Lightning (z1) Lightning/year 561 169,954 38,696 42,433 

Customer density (z2) Person/km
2
 2 1,631 147 313 
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The ANOVA (FISHER, 1918) results are also shown in Table 3 with independent variables 

that indicate F ratios of 47.95, 2147.68, 412.82 and 8.50 for the dependent variables network 

length, transformer capacity, number of employees and TINT, respectively. In the proposed 

model, the variables network length, transformer capacity and number of employees are well 

explained by the independent variables chosen (p < 0.005). 

4.3 Model specifications 

There are three different models shown in Table 4 that are all based on DEA considering input 

orientation and variable returns to scale (VRS).   

Variables Model 1  Model 2 Model 3 

Network length I I I 

Transformers capacity I I I 

Number of employees I I I 

TINT  I I 

Energy delivered O O O 

Number of customer O O O 

Lightning   EV 

Customer density   EV 

Ownership   EV 

I: Input,  O: Output, EV: Environmental variable 

Table 4. Summary of evaluated models 

It is noteworthy that in this Model 1, quality of supply can be compromised because utilities 

can reduce labour and capital inputs indiscriminately to pursue this efficiency. In Model 2, the 

TINT indicator was added as input based on the notion that DMUs should minimize the 

duration of interruptions (undesirable output). Model 3 used the same input and output 

variables as Model 2, but the environmental variables were included. This model tries to 

capture the extent to which the results are influenced by environmental variables.  

5. PRATICAL RESULTS 

The proposed methodology was applied to the three models defined in Section 4.3 using data 

provided by ten Brazilian distribution companies (Aes Sul, Bandeirante, CEEE, CEMIG, 

Elektro, Eletropaulo, Light, Paulista, Piratininga and RGE). Two analyses were made: one 

treated the Unit Networks as DMUs, and the other treated the companies as DMUs. 

5.1 Unit Network-oriented analysis 

The technical efficiency scores were calculated for the 70 UNs over the period 2006 to 2007. 

Models 1 and 2 were carried out based on a one-stage DEA, whereas Model 3 was based on a 

two-stage DEA. For the last Model, in which environmental variables are included, the Tobit 

analysis described in Section 3.1 was applied; Table 5 presents the estimation results. 

The lightning rate was statistically significant and produced a negative coefficient in the 

model. A one-unit increase in lightning lead to 0.04 decrease in the efficiency score. The 

effect of lightning on efficiency of distribution companies was also confirmed by (JAMASB 

et al., 2012). 

Customer density is statistically significant also and produces a positive coefficient. A one-

unit increase in customer density lead to 0.07 increase in the efficiency score. A positive 

effect of customer density on the efficiency of distribution companies was also confirmed by 

(ÇELEN, 2013). The ownership variable was statistically insignificant for this example and it 

was not considered.   
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Variable Parameter Coefficient t-ratio p-value 

Constant β0  0.80 48.34 <0.00001 *** 

Lightning  β1 -0.04  -2.84  0.00455 *** 

Customer density β2  0.07   3.19  0.00141 *** 

Dummy for Ownership β3 -0.03   -0.84  0.39885 

     

Number of observations 140    

Censored observations 0    

Log-likelihood  61.33    

*** Denotes significance at the 1% level using a two-tailed test 

Table 5. Tobit Analysis Results – Unit Network 

Table 6 presents the variable returns to scale efficiency scores (VRS), SAIDI index and 

environmental characteristics. By evaluating the environmental variables of Table 6, two 

types of heterogeneity can be identified:  

 External heterogeneity is related to the different characteristics of distribution 

companies. For example, Light is predominantly urban with a high customer density, 

and CEMIG is predominantly rural with a low customer density; 

 Internal heterogeneity is related to the different characteristics within a single 

distribution company. For example, Aes Sul has high, medium and low customer 

densities and various levels of lightning incidence. 

The results indicate that the UNs are, on average, technically efficient by approximately 0.75 

under Model 1, 0.79 under Model 2 and 0.79 under Model 3; these numbers reflect that there 

is room for improvement.  

The 15 UNs in Model 1 are efficient; note that nine UNs belong to an area with a high 

customer density. The UNs with low customer density that reached the frontier are Aes Sul 

(UN 9, 12) and RGE (UN 8, 9), which implies that the management is relatively good in terms 

of resource use. The other UNs with low customer density had average efficiencies of 0.57. 

The inefficiencies of all of the low-customer-density areas may be mainly due to poor load 

characteristics and scattered households, which cause these areas to be expensive and 

challenging for a power supplier. 

All of the UNs of Eletropaulo are efficient. It is noteworthy that Eletropaulo operates in an 

area with the highest load density in the country with low lightning incidence, in other words, 

a favorable area. Thus, in this model that includes no environmental variables, this 

distribution company appears as the most efficient.    

CEMIG (UN 9) has the worst score (0.38). The UN is compared to a linear combination of 

Aes Sul (UN 12), Eletropaulo (UN 3) and Light (UN 4). CEMIG (UN 9) has a strong rural 

character, while its latter two peers have an urban characteristic. Thus, it is expected that this 

Unit Network will increase its efficiency in Model 3, which includes customer density. From 

this comparison, the model results indicate that there must be a 65% reduction in the number 

of employees.  



 

 

 



 

 

Under Model 2, to which quality of supply was added to the analysis, 17 UNs are efficient, 

and 11 UNs are located in low lightning incidence areas. The average efficiency show that 

some Unit Networks rank high in Model 2 while they rank low in Model 1. 

Elektro has better results. Elektro (UN 1) has an efficiency of 0.45 in Model 1, where quality 

is not included. In Model 2, the same UN has an efficiency of 0.84, an increase of 0.44 in 

efficiency score. This indicates that the Model 1 can penalize Unit Networks that are efficient 

in quality of supply. Elektro (UN 1) peers are Aes Sul (UN 9), Eletropaulo (UN 3) and 

Piratininga (UN 1); the latter belongs to the distribution company with the lowest SAIDI in 

Brazil. Thus, Elektro (UN 1) showed an efficiency increase due to quality of supply because it 

has a SAIDI of 6.8 h, and its peers in Model 2 have 16.7, 7.1 and 5.0 h, respectively. 

Comparing UN 1 with other UNs of Elektro, it has the second smallest SAIDI of the 

company, surpassed only by UN 8, which operates in the most industrialised region of the 

concession area.  

Light (UN 5) had an efficiency of 0.72 in Model 1; in Model 2 it achieved the efficient 

frontier, an increase of 0.28 in efficiency score. The UN has the smallest SAIDI of the 

company with 6.4 hours; the others have SAIDIs between 8.6 and 14.5 hours. 

Model 1 may distort companies’ incentive. For example, in Model 1, RGE (UN 4) had an 

efficiency of 0.54 (which would result in a high X-factor) while its efficiency score in Model 

2 is 0.65.  

These findings suggest that there is trade-off between labour and capital inputs and quality of 

supply. Thus, models with quality are more suitable for efficiency analysis (GIANNAKIS, 

JAMASB and POLLITT, 2005). In this way, models like Model 1 have no captured the 

quality of supply aspect of distribution companies. 

Under Model 3, there are only seven efficient UNs that contrast with the results of Model 2. 

Some Units Networks have decreased their performance because they are located in a more 

favorable area. Some Units Networks have increased their performance because they are 

located in a less favorable area. For example, all four UNs of Eletropaulo have decreased 

performance. This is consistent with the reality that this company is in a high-density area. 

Additionally, CEMIG improves its performance, but is still far from the efficient frontier. 

CEMIG (Unit Network 4) has an efficiency of 0.72 in Model 1 and 0.73 in Model 2, where 

environment is not considered. In Model 3, the same Unit Network has an efficiency of 0.82, 

an increase in efficiency score of 0.12 and 0.11, respectively. This change can also be 

explained because of its lower-density area and the lightning incidence in some of its regions. 

This result indicates that the Model 1 and 2 can penalize Unit Networks that are located in an 

adverse area.  

Another interesting result from Table 6 is the differences in performance of UNs that belong 

to the same company. The manager can look more carefully for the worst UN and establish an 

improvement plan to take the UN to a better rank. For example, Aes Sul (UN 1 and 2) had an 

average efficiency of 0.41 in the Model 2. Their environment can explain part of this 

inefficiency: UN 2 has the third highest lightning incidence in the company and a density of 3 

customers per km
2
. These environmental characteristics are reflected in the quality of supply: 

Aes Sul (UN 2) customers on average suffer 42 hours per year without electric power. Aes Sul 

(UN 1) has a less adverse environment than Aes Sul (UN 2), with lower lightning incidence 

and 6 customers per km
2
. 

5.2 Company- oriented analysis 

The results of the three models are compared under the two approaches: (i) UN as DMU and 

(ii) distribution companies as DMU. For the first approach, the results of Section 5.1 were 
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weighted by the number of customers of each UN that belong to one company to produce a 

weighted average for each company.  

For Model 3, in which environmental variables are included, the Tobit analysis described in 

Section 3.1 was applied and Table 7 presents the estimation results. The p-value is greater 

than 0.05, which means that the variables are not significant. This result was not observed for 

the Unit Network oriented approach (see Table 5 in Section 5.1).  

Variable Parameter Coefficient t-ratio p-value 

Constant β0 0.92 27.86 5,48E-15*** 

Lightning β1 4.43E-08 0.48 0,64 

Customer density β2 7.31E-05 1.36 0,19 

Dummy for Ownership β3 -0.04 -0.70 0,50 

Number of observations 20 

  

 

Censored observations 0 

  

 

Log-likelihood 25.24 

  

 

Table 7. Tobit Analysis Results - Utilities 

One possible reason is that the environment variables are treated as averages for the entire 

concession area, failing to represent the diversity among regions as observed, for example, in 

the CEMIG concession area.  

This fact is shown in Table 8. For the utility-oriented approach, the efficient scores under 

Model 2 and Model 3 do not differ (columns 3 and 4 in the right table), whereas this is not 

true for the Unit Network-oriented approach (columns 3 and 4 in the left table).  

Bogetoft (2014) states that the models that ignore important environmental variables may 

have biased results. If environmental factors have impact on operation, such as rain and 

lightning, they must be part of the efficiency analysis. 

Unit Network 

 

Utility 

Utility Model 1 Model 2 Model 3  Utility Model 1 Model 2 Model 3 

 
Aes Sul 0.68 0.70 0.72 

 

Aes Sul 0.95 0.95 0.95 

Bandeirante 0.91 0.95 0.85 

 

Bandeirante 1.00 1.00 1.00 

CEEE 0.83 0.83 0.79 

 

CEEE 0.84 0.84 0.84 

CEMIG 0.76 0.79 0.87 

 

CEMIG 0.98 0.98 0.98 

Elektro 0.60 0.79 0.81 

 

Elektro 0.66 0.78 0.78 

Eletropaulo 1.00 1.00 0.69 

 

Eletropaulo 1.00 1.00 1.00 

Light 0.88 0.98 0.79 

 

Light 0.92 0.95 0.95 

Paulista 0.97 0.97 1.09 

 

Paulista 1.00 1.00 1.00 

Piratininga 0.93 0.93 0.86 

 

Piratininga 1.00 1.00 1.00 

RGE 0.69 0.73 0.76 

 

RGE 0.92 0.92 0.92 

Average 0.83 0.87 0.82 

 

Average 0.93 0.94 0.94 

St. deviation 0.14 0.11 0.11 

 

St. deviation 0.11 0.08 0.08 

Table 8. Comparison of aggregate approaches 

This is a very important result because many regulators, including that in Brazil, use the 

utility-oriented approach. 

Based on the left table, CEMIG improves its position and efficiency score under Model 3. In 

Model 1 and 2, CEMIG occupies the seventh position, while in Model 3 the same company 

occupies the second position. CEMIG increased its efficiency by 0.11 compared to the Model 

1 and 0.08 when compared to the Model 2.  

Eletropaulo leaves the efficiency frontier when compared to Models 1 and 2, with a decrease 

of 0.31 in its efficiency score. This is because CEMIG has a wide concession area with 
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different characteristics, particularly the environmental aspects. This is not observed at 

Eletropaulo, which has a small concession area characterized by a high-density load. 

Paulista also had its efficiency increased with the addition of environmental variables. The 

company increased its efficiency by 0.12 compared to the Model 1 and 2. Despite an 

environment with medium customer density, the distribution company operates in an area 

with a high lightning incidence. 

To evaluate the economic impact of different models presented in the left side of Table 8, a 

simulation was done with data from the Elektro distribution company. If we consider the 

Model 1, the reduction in Parcel B value is US$ 13,257,836. When evaluating the Model 2, 

Elektro has to reduce US$ 8,020,991 of the Parcel B value in the first year of the Third Price 

Revision, it means US$ 5,236,845 less than in Model 1. Model 3 imposes a reduction of $ 

6,032,331 in the Parcel B value. This reduction is $ 7,225,520 lower than in Model 1 and $ 

1,988,675 lower than in Model 2. 

For a better view of the UN influence on the company performance, Figure 5 was generated 

from Table 6: each UN in CEMIG is mapped according to its effect (positive or negative) and 

its intensity (high and low) on the efficiency score of Model 3.  

For the impact intensity, the number of consumers was used as a weight to address the relative 

importance of one UN to the company. For the positive and negative effects, the scores were 

divided into quartiles; the first quartile means the best performance and the fourth the worst. 

In this way, the UNs in the first quadrant have high positive impact, those in the third 

quadrant have low negative impact, etc. 

From Table 6 and Figure 5, one can see that UNs 8 and 9 play an important role in lowering 

the position of CEMIG because they have an average efficiency of approximately 0.52 in 

Model 3. UNs 8 and 9 are located in Southwest and Northwest of Minas Gerais state, 

respectively. These regions are characterized by low customer density (5 customers per km
2
) 

and high lightning incidence. This adverse environment is reflected in the quality of supply: 

UN 9 customers on average are without electricity 33 hours per year (highest SAIDI of 

CEMIG). Thus, the focus of the administration should be on UNs 8 and 9; every effort should 

be made to understand the problems and make the necessary adjustments to reduce the 

negative influence of the environment.  

 

Figure 5. Unit Networks Map 

UNs 1 and 6 contribute positively to the company rank because they have an average 

efficiency of 0.96. UN 1 is located in northeastern Minas Gerais state, which has a low 

customer density (6 customers per km
2
). UN 6 is in the central region of the state, 

characterized by a greater customer density than UNs 1, 8 and 9 (42 customers per km
2
) and 

high lightning incidence. It is noteworthy that UN 6 has the second best SAIDI of CEMIG. It 
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is important that with the UNs approach, the CEMIG administration can compare 

performance among their regions, extract lessons from UNs 1 and 6 and apply them UNs 8 

and 9. 

Some companies such as CEMIG, Elektro and Light already split the administration into 

regions. Each region has its own management and the board of the company views each as 

independent; i.e., each can allocate resources (capital and operational costs) to accomplish the 

objectives of the company. Although the UN was originally formed using electrical 

characteristics, they try to delimit regional units by their physical aspects, which resembles the 

approach described in Section 3.2. 

6. CONCLUSION 

Efficiency analysis is receiving considerable attention from the regulators of the electricity 

power sector, more specifically in the electricity distribution segment. Because of the natural 

monopoly characteristics of the distribution segment, utilities are not subjected to market 

forces. This paper simulated a virtual competitive scenario among utilities. Data Envelopment 

Analysis assists in this purpose by calculating the relative efficiency of distribution 

companies. It constructs an efficient frontier from the input and output data of a Decision 

Making Unit. This analysis provides a framework to analyse the effect of environment on 

distribution performance, especially in case of countries with large territories.  

The novel approach of this paper is in the use of Unit Network for split a distribution 

company concession area into more homogeneous subgroups that are further considered as 

Decision Making Units, being different from the traditional approach in which companies are 

seen as natural DMUs. Brazilian distribution companies are subject to external and internal 

heterogeneity due to its large concession area. This proposal solves the external and internal 

heterogeneity problem of Brazilian distribution companies.  

Another important improvement of the proposed method is that quality and environmental 

characteristics can be better represented when the company is divided into UNs. We studied 

three different models (Models 1, 2 and 3) and two analysis were made: one treated the Unit 

Networks as Decision Making Units, and the other treated the companies as Decision Making 

Units. 

Considering Unit Network-oriented analysis, we found that some UN that had a poor 

performance in Model 1 did score high in Model 2. These findings show that it is necessary to 

integrate quality of supply in benchmarking models. We find evidence of statistical 

significance in the relationship between environment variables and efficiency scores in Model 

3. Thus, lightning and customer density in our case have an impact on the performance of 

UNs. The size of adjustment of efficiency scores in some UNs is remarkable.  

Considering company-oriented analysis, we also found that efficiency scores are affected by 

the inclusion of quality. With regard to environmental variables, the effect on efficiency 

scores are insignificant. One possible reason is that the environment variables are treated as 

averages for the entire concession area, failing to represent the diversity among regions as 

observed. 

The definition of the product “electricity” and its price cannot be disassociated from quality of 

supply and environment characteristics. The distribution charge must take into account 

location, voltage level, quality of supply and the environment. Given that DEA is used for 

determining the allowed revenue, the regulator cannot override these factors. 
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